Size-optimized galactose-capped gold nanoparticles for the colorimetric detection of heat-labile enterotoxin at nanomolar concentrations.

نویسندگان

  • Vivek Poonthiyil
  • Vladimir B Golovko
  • Antony J Fairbanks
چکیده

The development of a galactose-capped gold nanoparticle-based colorimetric sensor for the detection of the lectin heat-labile enterotoxin is reported. Heat-labile enterotoxin is one of the pathogenic agents responsible for the intestinal disease called 'traveller's diarrhoea'. By means of specific interaction between galactose moieties attached to the surface of gold nanoparticles and receptors on the B-subunit of heat-labile enterotoxin (LTB), the gold nanoparticles reported here act as an efficient colorimetric sensor, which can detect the toxin at nanomolar concentrations. The effect of gold nanoparticle size on the detection sensitivity was investigated in detail. Amongst the various sizes of gold nanoparticles studied (2, 7, 12, and 20 nm), the 12 nm sized gold nanoparticles were found to be the most efficient, with a minimum heat-labile enterotoxin detection concentration of 100 nM. The red to purple colour change of the gold nanoparticle solution occurred within two minutes, indicating rapid toxin sensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chitosan Capped Silver Nanoparticles as Colorimetric Sensor for the Determination of Iron(III)

A selective, simple and low-cost method for the colorimetric determination of Fe3+ ions based on chitosan capped silver nanoparticles (Chit-AgNPs) was presented. Chitosan is a cationic polyelectrolyte and possesses amino and hydroxy groups which make it widely used as a capping agent for Ag NPs. The synthesized chitosan capped silver nanoparticles with excellent colloidal stability were charact...

متن کامل

Spectrophotometric Determination of 4-Hydroxy-2-mercapto-6-methylpyrimidine Based on Aggregation of Colloidal Gold Nanoparticles

We report herein the development of a highly sensitive colorimetric method for the detection of 4-hydroxy-2-mercapto-6-methylpyrimidine (MTU) which acts as an anti-thyroid drug utilizing citrate capped gold nanoparticles (Au-NPs). This thiol-containing molecule exhibits intriguing affinity with Au-NPs. The reactivity involves the displacement of the citrate shell by the thiolate shell followed ...

متن کامل

Simultaneous colorimetric determination of morphine and ibuprofen based on the aggregation of gold nanoparticles using partial least square

In this work a new method is presented for simultaneous colorimetric determination of morphine(MOR) and ibuprofen(IBU) based on the aggregation of citrate-capped gold nanoparticles (AuNPs). Citrate-capped gold nanoparticles were aggregated in the presence of morphine and ibuprofen. The difference in kinetics of AuNPs aggregation in the presence of morphine / ibuprofen was used for simultaneous ...

متن کامل

Comparing signal amplification of thiocyanated Gold nanoparticles in the presence of different ions

Detecting is the most important section in all kinds of sensors. In this regard, the amplification of surface plasmon resonance intensity of gold colloids nanoparticles (GNPs) was studied in the presence of several ions. GNPs were synthesized and then capped by thiocyanate and characterized via DLS and TEM image. In the next step the effect of different concentrations of ions such as iron, copp...

متن کامل

Selective colorimetric detection of Cr(iii) and Cr(vi) using gallic acid capped gold nanoparticles.

A colorimetric assay is proposed for the selective detection of Cr(iii) and Cr(vi) via the aggregation-induced color change of gallic acid capped gold nanoparticles (GA-AuNPs). The AuNPs are characterized using UV-vis spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS) and Fourier-transform infrared spectrometry (FT-IR). To detect Cr(iii) and Cr(vi) coexisting i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 13 18  شماره 

صفحات  -

تاریخ انتشار 2015